Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Peter R. Bolton, William Levason, Gillian Reid and Michael Webster*

Department of Chemistry, University of Southampton, Southampton SO17 1BJ, England

Correspondence e-mail: m.webster@soton.ac.uk

Key indicators

Single-crystal X-ray study T = 120 KMean σ (S–C) = 0.003 Å R factor = 0.029 wR factor = 0.064 Data-to-parameter ratio = 27.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

mer-Trichlorotris(dimethyl sulfide)ruthenium(III)

The title compound, *mer*-[RuCl₃(C₂H₆S)₃], contains discrete molecules with six-coordinate Ru atoms [Ru–Cl 2.3389 (10)–2.3562 (8) Å and Ru–S 2.3801 (8)–2.3879 (10) Å]. The structure is a polymorph of the form previously reported by Jaswal *et al.* (1990). [*Can. J. Chem.* **68**, 1808–1817].

Received 12 January 2004 Accepted 14 January 2004 Online 23 January 2004

Comment

The title compound, (I), was prepared as a precursor to studies of ruthenium catalysts. It has been prepared previously by two routes. The first was the direct reaction of $RuCl_3 \cdot 3H_2O$ with Me₂S in ethanol (Chatt *et al.*, 1971) and the second (unexpectedly) from $RuCl_3 \cdot 3H_2O$ and Me₂SO in boiling concentrated HCl (Jaswal *et al.*, 1990). The latter study also determined the crystal structure and confirmed the *mer* geometrical isomer proposed from earlier IR studies.

We used the preparation of Chatt *et al.* (1971) and measured the cell dimensions to confirm the identity of the product. The unit cell did not agree with that reported by Jaswal *et al.* (1990) and hence the structure was determined. The structure consists of discrete pseudo-octahedral molecules in the *mer* conformation (see Fig. 1 and Table 1) and is a polymorph of the form reported earlier (Jaswal *et al.*, 1990).

The structure could not be solved in the space group *Pnam* and a satisfactory solution was obtained in the non-centro-symmetric space group $Pna2_1$. The bond lengths agree well with the earlier study, the average Ru–Cl and Ru–S distances being essentially identical. The geometry of the

Figure 1

The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.

 \odot 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

coordinated dimethylsulfide ligand is likewise the same. The only point of note is the hint of a *trans* influence among the Ru–Cl and Ru–S distances. The longest bond to Cl is Ru1–Cl3 (by 0.011 Å), and Ru1–S3 is the shortest S distance (by 0.007 Å) with Cl3 and S3 in a *trans* relationship (Fig. 1). This is consistent with S > Cl in *trans* influence to Ru^{III}.

Experimental

RuCl₃·3H₂O (0.20 g, 0.76 mmol) was dissolved in a solution of ethanol (12.5 ml) and concentrated hydrochloric acid (1.25 ml). To this was added an excess of Me₂S (0.7 ml, 9.5 mmol) and the mixture was heated to reflux under nitrogen for 1 h and allowed to cool to room temperature. Partial removal of solvent followed by cooling to 263 K afforded the first batch of crystals, which were washed with hexane; this was repeated to obtain further product. The crystal used in the structure determination was obtained from the preparation.

Crystal data

 $\begin{bmatrix} \text{RuCl}_3(C_2\text{H}_6\text{S})_3 \end{bmatrix} \\ M_r = 393.80 \\ \text{Orthorhombic, } Pna2_1 \\ a = 16.391 (2) \text{ Å} \\ b = 8.540 (1) \text{ Å} \\ c = 10.482 (1) \text{ Å} \\ V = 1467.3 (3) \text{ Å}^3 \\ Z = 4 \\ D_x = 1.783 \text{ Mg m}^{-3} \end{bmatrix}$

Data collection

Nonius KappaCCD area-detector32diffractometer29 φ and ω scans R_i Absorption correction: multi-scan θ_n (SORTAV; Blessing, 1997)h $T_{min} = 0.629, T_{max} = 0.818$ k11276 measured reflectionsl =

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.064$ S = 1.043263 reflections 120 parameters H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0171P)^2 + 0.0078P]$ where $P = (F_o^2 + 2F_c^2)/3$ Mo $K\alpha$ radiation Cell parameters from 5262 reflections $\theta = 2.9-27.5^{\circ}$ $\mu = 2.00 \text{ mm}^{-1}$ T = 120 (2) KBlock, red $0.18 \times 0.18 \times 0.10 \text{ mm}$

3263 independent reflections 2912 reflections with $I > 2\sigma(I)$ $R_{int} = 0.058$ $\theta_{max} = 27.5^{\circ}$ $h = -21 \rightarrow 21$ $k = -11 \rightarrow 10$ $l = -12 \rightarrow 13$

 $\begin{array}{l} (\Delta/\sigma)_{\rm max} = 0.001 \\ \Delta\rho_{\rm max} = 0.79 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.65 \ {\rm e} \ {\rm \AA}^{-3} \\ {\rm Extinction \ correction: \ SHELXL97} \\ {\rm Extinction \ coefficient: \ 0.0045 \ (3)} \\ {\rm Absolute \ structure: \ Flack \ (1983),} \\ 1504 \ {\rm Friedel \ pairs} \\ {\rm Flack \ parameter \ = -0.04 \ (3)} \end{array}$

Table 1

Selected geometric parameters (Å, °).

Ru1-Cl1	2.3389 (10)	Ru1-S2	2.3876 (11)
Ru1-Cl2	2.3451 (9)	Ru1-S3	2.3801 (8)
Ru1-Cl3	2.3562 (8)	S1-C1	1.796 (3)
Ru1-S1	2.3879 (10)	S1-C2	1.791 (4)
Cl1-Ru1-Cl2	173.19 (3)	S3-Ru1-S1	90.10 (3)
Cl1-Ru1-Cl3	94.72 (3)	S2-Ru1-S1	174.22 (4)
Cl2-Ru1-Cl3	92.03 (3)	C2-S1-C1	99.11 (17)
Cl3-Ru1-S3	179.37 (3)	C4-S2-C3	99.71 (17)
S3-Ru1-S2	88.48 (3)	C5-S3-C6	97.90 (17)

H atoms were placed in calculated positions (C-H = 0.98 Å) with a common refined isotropic displacement parameter. The largest peak in the difference electron-density map was 0.9 Å from Ru1.

Data collection: *COLLECT* (Hooft, 1998) and *DENZO* (Otwinowski & Minor, 1997); cell refinement: *COLLECT* and *DENZO*; data reduction: *COLLECT* and *DENZO*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*II (Johnson, 1976).

We thank Professor M. B. Hursthouse for access to the EPSRC diffractometer.

References

- Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
- Chatt, J., Leigh, G. J. & Storace, A. P. (1971). J. Chem. Soc. A, pp. 1380–1389. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Jaswal, J. S., Rettig, S. J. & James, B. R. (1990). *Can. J. Chem.* 68, 1808–1817.
- Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.